
4 Coding 
 

The checklist is dynamic, not static, and will be updated regularly. If 
you have any suggestions or comments, we would like to hear from 
you. 
 
Possible measures for secure coding 

 Create a list of approved tools and libraries 

 Scanning of dependencies for known vulnerabilities or outdated versions 

 Manual code review 

 Static code analysis with security rules 
 
Use approved tools and frameworks 

 Establish a list of 
o approved tools with associated security features that will help to automate and 

enforce security procedures in the coding 
o approved supporting components 
o permitted third-party components and development tools. Avoid sharing of 

personal data through third-party libraries – use synthetic data instead 

 Describe in the lists what the various tools and supporting components will be used for, 
including new security analysis, functionality, and protection. Tools and supporting 
components should undergo risk assessment, and be analysed for privacy and security 
vulnerabilities. 

 Keep the lists updated according to organisation guidelines. This means that new tools 
and versions must be reviewed, and used wherever possible. 

 Use only approved tools and supporting components from the list. Any exceptions 
should be documented and approved by the security officer. 

 
Examples: Code patterns and templates for widely used/established functionality should be 
generalised, quality checked, and documented as current patterns/templates. Examples 
include how database calls should be made, and how they should be structured. 
 
Examples of approved tools and supporting components that must be included in lists: 

 Code library 

 Programming language 

 Version control system 

 Testing tools 

 Infrastructure 

 Monitoring tools 

 Logging server 

 Third party framework and APIs 
 
Example of this in practice: 
The organisation has decided on a coding method for initial and further development. This 
thus applies to all projects and project managers. They use a task management system, such 
as Jira or Confluence. All tasks have a dedicated owner who is also responsible for the task’s 
data protection and security. The status of all active tasks is established at a morning 



meeting for the team, where challenges that have arisen relating to, e.g. data protection can 
be discussed. Code review must be carried out by a different developer. This is important for 
avoiding personnel dependencies in the code, as well as to improve the quality of the code. 
But, it is equally important to have an additional person review the code to verify that data 
protection and security is preserved. Versions will be built for testing, and a release owner 
will be appointed. 
 
Invalidate unsafe functions and modules 

 Unsafe functions and modules are handled by tools, such as OWASP Dependency 
Check. 

 Disable unnecessary tracking, logging, and collection of personal data. 
 
Static code analysis and review 

 Establish business routines and/or checklists for static analysis and code review. 

 Analyse and review the source code regularly, and each time it is built. 

 Check data flow, storage and temporary storage of data. 

 Static analysis for data protection should primarily be performed manually, as 
“automated” tools for reviewing code for data protection are limited. It can be 
difficult to identify patterns because data alone does not necessarily constitute 
personal data, but connections between different types of data can provide personal 
data. 

 It is important that the person who does the work (the reviewer) has a thorough 
understanding of both the principles of data protection, the data subject rights and 
the requirements for data protection by design. 

 Have different levels of scanning, such as for developers, for security advisors, and 
for the person responsible for product release. 

 Establish guidelines for what should be scanned, and when. 
 
Examples of tools for static code analysis: 

 RIPS PHP Static Code Analysis Tool, OWASP LAPSE+ Static Code Analysis Tool, 
SonarQube, Checkmarx. 

 
Examples of how to perform static code review: 

 Regular (e.g. daily or weekly) scanning. 

 Scanning with both Scan Master and Dev Brancher, and performing a full security 
scan. 

 During “on build scanning”, minimum security requirements should be checked by 
Dev Brancher or Scan Master (e.g. SQL-Injection).   

 “On Demand scanning” is performed by the user’s IDE, and is a full security scan. 

 Use checklists for code review: 
o Example A1. Find all points with database access. Are queries with “dirty 

variables” being concatenated? 
o Example A4. How are users blocked from accessing other users’ data? 

 
Qualities to look for in a code analysis tool: 

 It should be designed for security. 

 It should support multiple levels (different programming languages and platforms). 



 It must be possible to expand. The tool should be able to be expanded to include new 
attack and defence techniques. 

 It must be useful to both security analysts and developers. 

 It should support existing development processes. 

 It should have value for multiple parties with ownership of the development (such as 
interfaces with measurements that can support decisions on release management, 
check costs when changes occur, and provide information needed for maintenance). 

 
 
Why secure coding? 

 The General Data Protection Regulation will apply when software is to be developed, 
cf. Article 25. 

 Tools, support systems, and infrastructure should be “state of the art”; i.e., the 
newest and most updated version of the technology, cf. Article 25. 

 It should be a fixed goal for the management to use secure and common 
methodologies for 

o coding 
o identifying and removing vulnerabilities in the code 
o using automated tools for code analysis 
o static code analysis and review 


